

Biomonitoring of Pesticide Exposure among the U.S. Population: 1996-2004

Bryan L. Williams, Ph. D. and Dana B. Barr, Ph. D.

Pesticide Laboratory

National Center for Environmental Health

Centers for Disease Control and Prevention

Atlanta, GA USA 30341

SAFER · HEALTHIER · PEOPLE™

Biomonitoring

direct measurement of human exposure to toxic substances in the environment by measuring the substances or their metabolites in human specimens, such as blood or urine.

Pesticide Biomonitoring

CDC's Major Biomonitoring Initiatives

 CDC's National Reports on Human Exposure to Environmental Chemicals

- Large-scale cohort studies
- Smaller hypothesis-generating studies

National Report on Human Exposure to Environmental Chemicals

What it is:

An ongoing (every 2 years) biomonitoring assessment of the exposure of the U.S. population to selected environmental chemicals

Matrices monitored: Urine; blood and its components

Chemicals in 4th Report

~265 chemicals

Metals

Polychlorinated biphenyls, dioxins and furans

Organochlorine pesticides

Carbamate pesticides

Organophosphorous pesticides

Pyrethroid pesticides

Herbicides

Polycyclic aromatic hydrocarbons

Phthalates

Phytoestrogens

Pest repellants

Cotinine

Perfluorinated chemicals

Brominated flame retardants

VOCs

Perchlorate

Bisphenol A & Alkylated phenols

Triclosan

Sunscreen agent

Speciated arsenic

Acrylamide

www.cdc.gov/exposurereport

Public Health Uses of these Data

- Estimates prevalence of exposure in U.S. population.
- Provides a way to compare prevalence estimates across various population subgroups
- Monitors changes in exposure over time of U.S. population
- Provides a way to estimate impact of policies/programs on human exposures
- Provides exposure data for risk assessment
- Helps set priorities for human health effects research

National Health and Nutrition Examination Survey

- Conducted by the National Center for Health Statistics/CDC
- Population is a stratified, complex, multistage probability sample of the civilian, noninstitutionalized U.S. population
- Estimates are probability based for the U.S. population
- Includes detailed history, physical, and laboratory exam

History of NHANES

Administered by National Center for Health Statistics (NCHS), CDC

NHANES I	1971-1975	No env'l chemicals monitored	
NHANES II	1976-1980	Lead, OC pesticides, pesticides	
HHANES	1982-1984	Lead, OC pesticides, pesticides	
NHANES III	1988-1994	Pb, Cd, Se; cotinine, PTRSS	
NHANES 99+	1999-2000	116 environmental chemicals	
NHANES 99+	2001-2002	148 environmental chemicals	
NHANES 99+	2003-2004	~250 environmental chemicals	

NHANES 1999-2004

- About 5000 participants annually from 15 locations
- Continuous annual survey
- Includes home interview
- Oversampled African Americans, Mexican Americans, adolescents (12-19 years), older Americans (≥ 60 years); pregnant women. In 2000 also low income whites
- More information: www.cdc.gov/nchs/nhanes/htm

Biological Matrices and Env'l Chemicals Monitored in NHANES

Two primary matrices used for NHANES biomonitoring are blood (or its components) and urine. Limited amount of blood is available; urine limited by age group.

Age (years)	Blood (mL)	Env'l Analytes	Urine	Env'l Analytes
1-2	9	Pb, Cd, Hg	Not Sampled	NA
3-5	22	Pb, Cd, Hg, Cot	Not Sampled	NA
6-11	38	Pb, Cd, Cot	Sampled	Phthalates, NPP, PAHs, metals, Phytoestr
12+	89-92	Pb, Cd, Hg*, Cot, POPs	Sampled	Phthalates, NPP, PAHs, metals, Phytoestr

^{*}Only in females 16-49 years

Strengths of NHANES

- Provides prevalence estimates of exposure in general population
- Allows us to examine exposure trends across variable time increments
- Provides a metric for evaluating the impact of regulatory actions

Limitations of NHANES

- Lack of geographic, temporal, and population generalizability
- Spot samples
- Contributions of exposures to metabolites in the environment not considered

Pesticides Assessed as a Part of NHANES

- Insecticides
 - Organophosphorus
 - Carbamate
 - Pyrethroid
- Herbicides
 - Phenoxy acid
 - Triazine
 - Chloroacetanilide
- Repellents
- Fungicides
- Fumigants

Organophosphate Pesticides

- Widely used insecticides
 - ♦ 8% total pesticide use in US
 - Used in treatment of over ½ insecticide-treated areas
 - ♦ About ⅔ of total insecticide used in agriculture
- Potent neurotoxicants
- 1st class of chemicals whose tolerances were reevaluated as a part of the FQPA of 1996

OP Exposure By Year

Percent Reduction from NHANES (89-94) to NHANES (03-04)

Metabolite	% Reduction
DMP (dimethylphosphate)	-32.61
DMTP (dimethylthiophosphate)	-13.04
DMDTP (dimethyldithiophosphate)	-19.12
DEP (diethylphosphate)	-28.57
DETP (diethylthiophosphate)	-31.58
DEDTP (diethyldithiophosphate)	-8.57

Estimates of OP Exposure

Estimates of OP Exposure in Children

Observations

- most vulnerable segments of our population, children and elderly adults, appear to have higher exposures to OP pesticides than do other population segments
- Overall exposures to OP pesticides appear to have declined over the last few decades suggesting that exposure mitigation strategies resulting from regulatory efforts have been effective

Conclusions

- Biomonitoring data are useful for following trends in exposure
- Long-term stability of methodology is required
- Exposure reduction efforts appear effective
- Human data can markedly decrease the uncertainties associated with exposure assessment

